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Abstract. Survival or extinction of an endangered species is inherently stochastic. We
develop statistical methods for estimating quantities related to growth rates and extinction
probabilities from time series data on the abundance of a single population. The statistical
methods are based on a stochastic model of exponential growth arising from the biological
theory of age- or stage-structured populations. The model incorporates the so-called en-
vironmental type of stochastic fluctuations and yields a lognormal probability distribution
of population abundance. Calculation of maximum likelihood estimates of the two un-
known parameters in this model reduces to performing a simple linear regression. We
describe techniques for rigorously testing and evaluating whether the model fits a given
data set. Various growth- and extinction-related quantities are functions of the two param-
eters, including the continuous rate of increase, the finite rate of increase, the geometric
finite rate of increase, the probability of reaching a lower threshold population size, the
mean, median, and most likely time of attaining the threshold, and the projected population
size. Maximum likelihood estimates and minimum variance unbiased estimates of these
quantities are described in detail.

We provide example analyses of data on the Whooping Crane (Grus americana), grizzly
bear (Ursus arctos horribilis) in Yellowstone, Kirtland’s Warbler (Dendroica kirtlandii),
California Condor (Gymnogyps californianus), Puerto Rican Parrot (dmazona vittata),
Palila (Loxioides balleui), and Laysan Finch (Telespyza cantans). The model results indicate
a favorable outlook for the Whooping Crane, but long-term unfavorable prospects for the
Yellowstone grizzly bear population and for Kirtland’s Warbler. Results for the California
Condor, in a retrospective analysis, indicate a virtual emergency existed in 1980. The
analyses suggest that the Puerto Rican Parrot faces little risk of extinction from ordinary
environmental fluctuations, provided intensive management efforts continue. However,
the model does not account for the possibility of freak catastrophic events (hurricanes,
fires, etc.), which are likely the most severe source of risk to the Puerto Rican Parrot, as
shown by the recent decimation of this population by Hurricane Hugo. Model parameter
estimates for the Palila and the Laysan Finch have wide uncertainty due to the extreme
fluctuations in the population sizes of these species. In general, the model fits the example
data sets well. We conclude that the model, and the associated statistical methods, can be
useful for investigating various scientific and management questions concerning species
preservation.

Key words: California Condor; conservation biology; diffusion process; endangered species; ex-
ponential growth; extinction; grizzly bear; inverse Gaussian distribution; Kirtland’s Warbler, Laysan
Finch; lognormal distribution; Palila; parameter estimation; Puerto Rican Parrot; stochastic differential
equation; stochastic population model; Whooping Crane; Wiener process.

INTRODUCTION

The extinction of a population is a chance event. A
population’s growth inevitably displays stochastic fluc-
tuations due to numerous unpredictable causes. Con-
sequently, a species with an average negative growth

! Manuscript received 11 December 1989; revised and ac-
cepted 26 July 1990; final version received 23 August 1990.

rate might temporarily prosper, while a species with a
positive rate might become endangered. The field of
conservation biology has recognized the importance of
accounting for stochastic factors in species preserva-
tion efforts (Shaffer 1981, Samson et al. 1985, Soulé
1986, 1987, Burgman et al. 1988, Lande 1988, Sim-
berloff 1988). Such accounting in practice has proved
no easy task.
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Many mathematical models of population growth
incorporating stochastic fluctuations have been stud-
ied; Nisbet and Gurney (1982) and Goel and Richter-
Dyn (1974) provide excellent surveys. The chance of
extinction or waiting time to extinction is frequently
the focus of theoretical or numerical analyses of sto-
chastic growth models (Capocelli and Ricciardi 1974,
Richter-Dyn and Goel 1974, Feldman and Roughgar-
den 1975, Keiding 1975, Leigh 1981, Tier and Hanson
1981, Ginzburg et al. 1982, Braumann 1983¢, b, Wright
and Hubble 1983, Strebel 1985, Goodman 1987, Lande
1987, Iwasa and Mochizuki 1988, Lande and Orzack
1988, Dennis 1989a). Ginzburg et al. (1982), in par-
ticular, described the concepts of risk analysis as a
framework for such extinction studies. These studies
have tended to use relatively simple stochastic models
such as univariate birth—death processes or diffusion
processes, since the analyses are considerably easier as
compared to more complex models. Despite their ap-
parent lack of realism, these simple stochastic models
have yielded qualitative insights into general manage-
ment questions, such as the determination of mini-
mum viable population sizes, whether demographic,
genetic, or environmental fluctuations are more im-
portant to a species’ survival, whether single large or
several small reserves afford the least extinction risk,
and how Allee effects might be manifested in stochastic
populations (Leigh 1981, Wright and Hubbell 1983,
Wilcox 1986, Goodman 1987, Burgman et al. 1988,
Simberloff 1988, Burkey 1989, Dennis 1989a).

The usefulness of simple stochastic models, though,
seemingly diminishes for specific, real situations. First,
many endangered vertebrate populations are age struc-
tured and have periodic breeding seasons, so that mod-
els containing a single state variable and/or continuous
time would appear unrealistic and inappropriate for
quantitative predictions concerning particular species.
An alternate approach preferred by some investigators
has been the construction of detailed simulation mod-
els with many variables, parameters, and stochastic
components (e.g., Shaffer and Samson 1985, Mode and
Jacobson 1987a, b, Ferson et al. 1989). Second, sto-
chastic models are limited in practice by the quality
and quantity of data on the growth of endangered spe-
cies. In this regard, the improvements offered by de-
tailed simulation models over simple analytical models
can be dubious. It is a statistical fact of life that less
data allows estimation of fewer parameters, and it is
quite common for components (particularly stochastic
components) of simulation models to be set rather ar-
bitrarily. Finally, even in situations where good data
exist, it has not been at all clear to investigators how
to interface stochastic models (or deterministic ones,
for that matter) with data. Appropriate statistical meth-
ods for parameter estimation, model evaluation, and
hypothesis testing for stochastic growth models would
enhance our understanding of biological populations.

However, mathematical studies have suggested that
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simple stochastic models might serve as useful ap-
proximations for various quantities pertaining to age-
structured populations experiencing stochastic fluctu-
ations. Theoretical results concerning stochastic Leslie
matrices have indicated that, under very mild as-
sumptions, the logarithm of total population size in an
age-structured population can be approximated by a
simple stochastic process known as the Wiener process
(or Brownian motion) with drift (Tuljapurkar and Or-
zack 1980, Heyde and Cohen 1985, Tuljapurkar 1989).
This model represents a simple stochastic exponential
growth model for population size, and as such had
been proposed and analyzed in the population biology
literature (Capocelli and Ricciardi 1974). Most of its
statistical properties, like the distribution of the waiting
time until an upper or lower fixed size is attained, had
been derived decades earlier by physicists and math-
ematicians. Population biologists have realized that
these statistical properties might prove useful for ex-
tinction calculations (Capocelli and Ricciardi 1974,
Ginzburg et al. 1982, Braumann 19835, Levinton and
Ginzburg 1984, Lande and Orzack 1988). Lande and
Orzack (1988), in particular, recently emphasized the
potential importance of the Wiener-drift process as a
general approximation for age-structured populations,
and showed with computer simulations that the as-
sociated approximations for extinction-related quan-
tities can be quite acceptable.

Furthermore, statistical inference methods for sim-
ple stochastic processes are accumulating in the math-
ematical statistics literature (e.g., Basawa and Prakasa-
Rao 1980), and inference for the Wiener-drift process
has been developed in the specific context of popula-
tion biology. Braumann (198356) and Dennis (19895)
studied the question of how to fit this stochastic ex-
ponential growth model to data. To “fit” means to
estimate the two parameters (denoted u and o2 in this
paper) in the model in some statistically acceptable
manner, given data on some growing or declining pop-
ulation. Braumann (198356) derived maximum likeli-
hood (ML) estimates for time series data with obser-
vations spaced at equal intervals. Dennis (1989b)
generalized these estimates to unequally spaced inter-
vals and showed how the problem can be transformed
to a simple linear regression, making available the whole
battery of linear model diagnostics, tests, and software.

These combined developments now make possible
the estimation of quantities related to growth and ex-
tinction for a variety of endangered species, using rel-
atively straightforward statistical techniques. We de-
scribe the necessary techniques in this paper, and
provide illustrative analyses of data on the Whooping
Crane (Grus americana), grizzly bear (Ursus arctos hor-
ribilis), Kirtland’s Warbler (Dendroica kirtlandii), Cal-
ifornia Condor (Gymnogyps californianus), Puerto Ri-
can Parrot (dmazona vittata), Palila (Loxioides bailleui),
and Laysan Finch (Telespyza cantans). The quantities
estimated are functions of the two parameters in the
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stochastic exponential growth model and include the
continuous rate of increase, the finite rate of increase,
the probability of extinction, the mean time to extinc-
tion, and the projected population size. The model is
easy to use and fits the example data well. The statis-
tical methods discussed here for applying the model
are best used with true census data, or with population
estimates in situations where sampling variability is
small compared to population variability. We conclude
that the model, in conjunction with the statistical in-
ference methods described here, is a potentially valu-
able tool for addressing scientific and management
questions in conservation biology.

THE STOCHASTIC EXPONENTIAL
GROWTH MODEL

Projection matrix

The Lewis-Leslie model (Lewis 1942, Leslie 1945)
is a frequently used mathematical representation of
density-independent growth of an age-structured pop-
ulation observed at discrete time intervals. The model
can be written as

M(t + 1) = 4(t)m(2), (1)

where Mm(?) is a column vector containing elements rep-
resenting numbers of individuals (usually females) in
each age classat time ¢ (t =0, 1, 2, ...), and 4(¢) is a
square matrix containing age-specific fecundity rates
(top row), age-specific survivorship rates (subdiago-
nal), and zeros elsewhere (see van Groenendael et al.
1988 for a recent review). The model is easily gener-
alized to stage-structured populations by incorporating
additional positive elements into the projection matrix
A(t) (Lefkovitch 1965). If the elements in 4(f) are con-
stant, the total population size ultimately approaches
exponential growth or decline, after initial age- (or
stage-) structure imbalances damp out into a stable age
structure. The exponential growth is represented by

(2

where N(¢) is the total population size [summed ele-
ments of the vector m(t), n, = N(0) is the initial pop-
ulation size, and A is the dominant eigenvalue of the
projection matrix (finite rate of increase).

However, the elements of a realistic projection ma-
trix should fluctuate with time, since fecundity, sur-
vivorship, or stage transition rates are seldom constant
in nature. An alternative modeling approach is to as-
sume that the elements of 4(¢) change with time in the
form of a (multivariate) stationary time series. Tulja-
purkar (1989) has given a comprehensive review of the
demographic theory of populations governed by such
dynamics. This modeling assumption is mathemati-
cally broad enough to include many real situations and
is fundamental to the analysis methods we describe in
this paper. Note that this assumption excludes popu-
lations experiencing nonstationary fluctuations in de-

N(t) = no\,
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mographic rates, such as decreasing survival or repro-
duction rates due to diminishing habitat.

This stochastic formulation seems to have the min-
imum level of biological detail necessary for describing
a vertebrate population. By contrast, a deterministic,
single-state variable model such as Eq. 2 would not
likely provide much useful information concerning
survival or extinction of an endangered species.

A stochastic single-state variable model, though, can
adequately approximate the statistical properties of the
fluctuations in total population size resulting from the
stochastic projection matrix. Results of Tuljapurkar
and Orzack (1980) and Heyde and Cohen (1985), based
on central limit theorems, state that the quantity X(¢)
=log N(¢) will have, as t becomes large, an approximate
normal distribution with a mean of x, + ut and a
variance of ¢?¢ [written X(¢f) ~ normal(x, + ut, o%),
where “~*’ means “‘is distributed as,”” and the dot in-
dicates that the distribution is approximate], where x,
= log n,. The approximation can be improved by ad-
justing n, for initial age structure imbalances (see Lande
and Orzack 1988), but we confine ourselves in this
paper to estimation techniques that do not require de-
tailed knowledge of age structure. Here, u is a real-
valued constant, and ¢2 is a positive, real-valued con-
stant. These parameters depend on properties of the
underlying stochastic projection matrix. If the matrices
4(1), 4(2), . . ., are serially uncorrelated (for example,
each year or time period, elements of the projection
matrix are drawn from a multivariate distribution, in-
dependent of previous years), then

u = log A — (6%/2) A3

and

02 = \2%'co,

4

where A is now the dominant eigenvalue of the average
projection matrix 4*{= E[A(¢?)]}, c is the variance—co-
variance matrix of the multivariate distribution from
which the elements of 4(¢) arise, and é is a column
vector containing partial derivatives of A with respect
to each element of 4* (Tuljapurkar 19825b).

While estimating the multitudinous quantities in a
projection matrix with any useful degree of precision
can be exceedingly difficult, estimating x and o2 is pos-
sible with just a single time series of observations on
total population size. Furthermore, various quantities
related to extinction are functions of u and ¢2 and are
straightforwardly estimated.

Ease of estimation arises from the fact that the ap-
proximate normal distribution of X(¢) is identical to
the distribution of a Wiener process with drift (e.g.,
Goel and Richter-Dyn 1974). The Wiener-drift model
is a simple type of continuous-time, continuous-state,
Markov stochastic process known as a diffusion pro-
cess. Taking X(¢) to be a Wiener-drift process, strictly
speaking, imposes an additional layer of approxima-
tion on top of the results of Tuljapurkar and Orzack
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(1980) and Heyde and Cohen (1985), in that the Wie-
ner-drift process has the above-mentioned normal dis-
tribution for small values of ¢ as well as large. Lande
and Orzack (1988), though, showed with computer
simulations that extinction probabilities under various
hypothetical life histories were accurately predicted with
the Wiener-drift approximation, provided the fluctu-
ations in the projection matrix elements were small or
moderate. We discuss diagnostic procedures later in
this paper to evaluate the adequacy of the Wiener-drift
model for a given data set (see Model evaluation sec-
tion).

Diffusion approximation

We assume that the natural logarithm of total pop-
ulation size, X(¢) = log N(¢), is adequately approxi-
mated by a Wiener process with drift. This process has
been extensively studied; Goel and Richter-Dyn (1974),
Ricciardi (1977), and Karlin and Taylor (1981) provide
lucid expositions of it and other diffusion processes.
The constant u is known as the infinitesimal mean of
the process, since uAt is the (approximate) average
amount of change in the process over a tiny time in-
terval At. The constant o2 likewise is known as the
infinitesimal variance. The process has a transition
probability density function (pdf) corresponding to a
normal(x, + ut, ¢%t) distribution:

Pal(x, t|xo) = (2wo?t) exp[—(x — xo — wu)*/(26%1)],
-0 < x <o, (5)

The probability that X(¢) is between a and b at time ¢,
given that the process starts at x,, is the corresponding
area under the pdf. This probability can be evaluated
with the standard normal cumulative distribution
function (cdf), ®(-):

b
Prla < X(t) = b] = f PAX, t]x,) dx

_ <b - Xo — [.Lt>
ot
a Xo — Mt
- Y —
( N ) ©

where

P(z) = f (2m)~"exp(—y?*/2) dy. 7

The untransformed total population size, N(¢) =
exp[X(?)], is also a diffusion process. The transition pdf
for N(¢) is that of a lognormal distribution:

pu(n, tng)
= n~Y(c*t2m) "exp[—(log n — log n, — ut)*/(20%t)],
0<n<oo (8

The mean (or expected) population size, given that the
process starts at n,, is
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E[N(®)] = ¥(z; no, 1, 0?)

noexp{[u + (*/2)]t}. €))

For the case of serially uncorrelated projection matri-
ces, the mean population size is identical to the deter-
ministic exponential growth model (Eq. 2), with A given
by Eq. 3. The mean of X(¢) by contrast does not depend
on o2

E[X(0)] = v(; X0, W) = Xo + nt. (10)

The geometric mean of N(?) is defined by exp{E[X(#)]}:
(11

The geometric mean is also the median of the lognor-
mal transition pdf (Eq. 8), which is a general property
of the lognormal distribution (see Dennis and Patil
1988). Analytical (Tuljapurkar 1982a) and simulation
(Slade and Levenson 1982, Nordheim et al. 1989) stud-
ies suggest that the geometric mean of N(¢) better char-
acterizes the behavior of the process than does the
mean (Eq. 9), due to the extreme positive skewness of
the lognormal transition pdf. Other statistical prop-
erties of this process are catalogued by Dennis and Patil
(1988).

Any diffusion process in general has an alternate
mathematical representation as a stochastic differential
equation (SDE) (e.g., Karlin and Taylor 1981). Of par-
ticular interest here is that the process N(¢) is the so-
lution to an SDE version of the exponential growth
model given by

exp{E[log N@)]} = B(¢; no, u) = neexp(us).

dN(t) = rN(t) dt + oN(t) dW(2), (12)

where r is a real-valued constant and dW(t) ~ nor-
mal(0, dt). The differential dN(¢) is defined mathe-
matically in terms of an Ito stochastic integral (for
example, Soong 1973); the constants u and ¢? in the
transition pdf (Eq. 8) for N(¢) are related to r by

=p + (6%/2). (13)

For the case of serially uncorrelated projection matrices
(see Eq. 3), r = log A.

Previous studies of extinction probabilities (Capo-
celli and Ricciardi 1974) and parameter estimation
(Braumann 19835b) for the exponential growth SDE
(Eq. 12) used a Stratonovich stochastic integral to de-
fine dN(¢); those results should not be used if the dif-
fusion process N(¢) is intended as an approximation
for an underlying age-structured, discrete-time system.
The Stratonovich formulation instead more appropri-
ately represents a system in which the state variable is
fundamentally a continuous function of time (e.g., bio-
mass). Turelli (1977), Capocelli and Ricciardi (1979),
and Braumann (1983a) provide insights into the two
ways of interpreting the SDE (Eq. 12) as an approxi-
mation for some underlying process, and Dennis and
Patil (1988) list formulas for transforming Ito-based
results to Stratonovich-based results and vice versa.
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Extinction properties

Under the continuing unpredictable fluctuations of
the Wiener-drift model, X(¢) could possibly cross any
lower threshold size, x,, starting from x,. This event
corresponds to the population size, N(¢), attaining a
lower threshold size, n, = exp(x,), starting from n,. If
n, = 1 (or x, = 0), the event obviously represents the
extinction of a closed, sexually reproducing population.
Management efforts to promote survival of an endan-
gered species might naturally hinge upon a different
threshold size. Some fixed population size, n, > 1,
could be regarded as a policy threshold, or as a safety
cushion to avoid the possibilities of Allee effects (e.g.,
Dennis 1989a), skewed sex ratios, or inbreeding. We
use the term ““extinction” in this paper to refer broadly
to the attainment of some prespecified lower threshold,
representing, if not the demise of the species, the de-
mise of some management regime. The term ““quasiex-
tinction” has also been used in this context (Ginzburg
et al. 1982). Let x, represent the distance on the log-
arithmic scale from an initial population size to a lower
threshold population size:

X; = Xo — X, = log(ny/n,).

(14)

As explained in the context of extinction by numerous
authors (Capocelli and Ricciardi 1974, Ricciardi 1977,
Tuljapurkar and Orzack 1980, Ginzburg et al. 1982,
Lande and Orzack 1988), the probability =(x,, p, 0?)
that the process will ever attain the threshold is

ILu=0;

exp(—2ux,/a%), u > 0. (15

m(Xa W, 07) = {
Given that the threshold is attained (i.e., condition-
ing on all sample paths of the process that reach the
threshold), the amount of time, 7, elapsing before the
threshold is first reached is a positive, real-valued ran-
dom variable with a continuous probability distribu-
tion. The cdf of the distribution can be written in terms
of a standard normal cdf:

Pr[T = 1] = G(t; x4 1, 07)

—xg + |u|z)

==L "

( oVt

—x, + |#|t>

+ exp(2x, /6P| ————),
p(2x,|p|/c?) ( Ry

0<t<oo (16)

The pdf of the distribution is the derivative of G(f; x,,
u, o) with respect to ¢:

g(t9 Xa> Ky 02)

= x/2m0?t*) exp[—(x, — |r|0)*/(26*0). (17)

This distribution, known as the inverse Gaussian dis-
tribution (a misnomer: it is not the distribution of the
reciprocal of a normal random variable), has been ex-
tensively studied (see Folks and Chhikara 1978).
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Yellowstone Grizzly Bear
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Fic. 1. Probability density function (PDF) of the inverse

Gaussian distribution, plotted using maximum likelihood es-
timates of parameters u and o2 for the Yellowstone National
Park population of grizzly bears. The distribution is that of
the time required for 47 female bears to decline to 10 bears.

Schrédinger (1915) originally obtained it as the first-
passage time distribution for the Wiener-drift process
for the case u < 0; Tweedie (1957a, b) derived many
of its statistical properties. Whitmore (1978) obtained
the inverse Gaussian explicitly as the conditional first-
passage time distribution for the case 4 > 0. Whitmore
and Seshadri (1987) and Lande and Orzack (1988) have
given intuitive derivations of the first-passage time re-
sult.

We note that the probability distribution of the time
to attain an upper threshold, given it is attained, is also
the inverse Gaussian distribution (Eqgs. 16 and 17),
except with x, representing log(n,/n,), where n, is the
upper threshold. The probability of ever attaining 7,
is given by w(x,;, —u, ¢?), that is, by (Eq. 15) evaluated
at log(n,/n,), —u, and o>.

Various quantities pertaining to this distribution are
of potential interest in conservation biology. The mean
time until the threshold population size is reached is
the expected value of T~

E[T] = 0(x,, w) = x/|1|. (18)
The variance of T is
Var(T) = x,0% |p|3. (19)

The distribution is positively skewed and has a heavy
right tail (an example shape is portrayed in Fig. 1), a
fact that has implications for species preservation ef-
forts (see Examples and Discussion sections). Percen-
tiles and modes are quantities that help to characterize
such skewed distributions. The 100:-pth percentile,
£,(x4 1, 0?), is defined as the root of

G(&,; Xa» u, 0%) = p. (20)
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For example, the 50th percentile of the distribution,
or the median, represents the fixed time at which the
probability of hitting the threshold before that time is
0.5. The mode of the distribution is the most likely
time of hitting the threshold, and is defined as the value
of t maximizing the pdf (Eq. 17):

V2
. 2y = Xa 2) 3
t (xzh ”,U) |ll~| l:(l + 4V2 21/ > (21)

where v = x,|u|/g2. Note that the mode is the product
ofthe mean and a quantity (in square brackets) between
0 and 1.

The notation used above emphasizes that these
quantities are functions of the parameters x,, u, and
2. The quantity x,, the (log-scale) distance to the
threshold population, is selected by the investigator.
The parameters u and o2, however, are typically un-
known and must be estimated from data.

PARAMETER ESTIMATION
Maximum likelihood estimates

Estimates of 1 and ¢2 can be obtained by observing
a population at times O, ¢,, ¢,, ..., f,. The recorded
observations of population size will be denoted n(0) =
ne, n(t,) = n,, ..., n(t,) = n,, and the time intervals
(not necessarily equal) between observations denoted
t, - 0=71,t,—t, =7y ..., t,— t,, =71, Fora
population with a yearly breeding cycle, these obser-
vations should be spaced at least 1 yr apart and taken
at the same time of year. A recommended way of fitting
the stochastic exponential growth model to such data
is maximum likelihood (ML) estimation.

ML estimates of the two parameters are easy to cal-
culate and have many desirable statistical properties.
The likelihood function /(u, ¢?) is defined as the joint
pdf for N(¢,), N(t,), . .., N(t,), given N(0) = n,, eval-
uated at the observations 7n,, n,, . . . , n,. To obtain the
likelihood function, we note that N(¢) is a diffusion
process with stationary transition probabilities. This
means that the pdf of », given n;,_, depends on 7, (the
time interval since #,_,) but not on ¢,_,. Also, the dif-
fusion process is a Markov process, meaning that the
pdf of n, given n,_, does not depend on the earlier
observations n,, . . ., n,_,. Thus, py(n,, 7,|n,_,), which
is the lognormal transition pdf (Eq. 8) evaluated at »,,
7, and n,_,, represents the likelihood of the system
moving to »; from #n,_, in a time interval of 7,. The
likelihood function is then the product of transition
pdfs:

Uy, 0%

= pMny, 7| no)pa(ny, 72| 0y) PRy, 7, | n,_y). (22)
The ML estimates, 4 and 62, are the parameter values
jointly maximizing /(u, ¢2) or, equivalently log /(u, ¢2),
where
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log i(u, 62 = — 2 log[n,(27,m)"]

i=1

— (g/2)log 0% — [1/(20%)]

Zq: (I/r)llog(ni/n.) — pri]®. (23)

It is straightforward to set partial derivatives of log
I(u,0%) with respect to p and o2 equal to zero and solve
for the ML estimates:

u= lié IOg(ni/ni—l)] i Ti

~ Hog(n,/mo)Vt,: 4)

o> = (1/q) i (1/7)llog(n/n,-) — w7 . (25)

i=1

We mention that the ML estimate (Eq. 25) of o2 is
biased (e.g., Dennis 19895); an unbiased estimate is

a?/(q — 1). (26)

The difference between 6> and 62 is negligible when g
is large. Often g will not be very large in data on en-
dangered populations, though.

52 =

Linear regression approach

These identical ML estimates of u and o2 can also
be calculated by a regression approach. This approach
offers the following practical advantages. First, infor-
mation about the statistical distributions of the ML
estimates is easily obtained (e.g., confidence intervals).
Second, a battery of diagnostic procedures for linear
regression models becomes available for evaluating the
diffusion model. Finally, the analyses can be accom-
plished with most of the standard computer packages
for linear regression.

The approach involves transforming the observa-
tions so that a normal linear model applies. Let W, =
log[N(t,)/N(t;_ )] = X(t)) — X(t;_,), so that W, represents
the change in X(¢) (the Wiener-drift process) between
times ¢,_, and ¢,. Thus, the variables W, W,, ..., W,
are increments of a Wiener-drift process, and are there-
fore normal, independent, and stationary (e.g., Ric-
ciardi 1977). In fact, if w=[W,, W,, ..., W/)]'and 7
= [1), 75, ..., 7,]’ are defined as column vectors, the
distribution of w becomes a multivariate normal, with
mean ur and variance—covariance matrix o2v:

w ~ normal(ur, o?»). 27)

Here v = diag(r) is a matrix with the elements of 7 on
the main diagonal and zeros elsewhere. Let ¢ = diag
V7, ..., \V/1,), that is, ¥ = ¢'G. A transformation of
w produces an ordinary normal linear model (e.g.,
Graybill 1976:207):

Y = G~ 'w ~ normal(up, ¢%I1),

where b = [\/7,, . .

(28)
.»\V/7,]' and 1is the g x g identity
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matrix. This is a model for a simple linear regression
without intercept.

In practice, the data are transformed by y; = [log(n/
n,_)/\/7,i=1,...,q The regression approach uses
V1> Va» - - - » ¥, as values of the “dependent variable,”
V71, ..., \V7,as values of the “independent variable,”
and a linear regression without intercept is performed.
The formula (Eq. 24) for i is recognized as the slope
parameter estimate, and > (Eq. 26) is the (unbiased)
estimate of the error variance parameter. The ML es-
timate of ¢2 is 62 (Eq. 25).

The usual linear model theory yields the distribu-
tions of fi, 62, and &% (Graybill 1976):

(29
(30)

Also, fi is independent of 62 or 2. An estimate of the
standard error of f is (62/¢,)", and a 100(1 — «)% con-
fidence interval for u is given by

B = laag- 1NV 1ty b+ typ 1 V).  (31)

Here Pr[|T,_,| =< t.,,,.:11 =1 — a, where T,_, has a
Student’s ¢ distribution with ¢ — 1 degrees of freedom.
Confidence intervals for ¢> can be calculated with
either the ML or the unbiased estimate. For example,
a 100(1 — a)% confidence interval for o2 based on the
ML estimate is

i ~ normal(u, 0%/t,),
q62/0* = (@ — 1)6*/g* ~ chi-square(g — 1).

(32

where a;, + a, = a, 0 < ay, a,, and Pr[X,_, = x2,,.1]
=1 — a, where X,_, has a chi-square distribution with
g — 1 degrees of freedom. The confidence interval using
the unbiased estimate would simply substitute (g —
1)62 for go2 in Eq. 32.

(@5 X015 G5/X 1 a0

MOoODEL EVALUATION

The equivalence of the Wiener-drift model for X(¢)
and the linear regression model for the transformed
increment variables v (see Eq. 28) is extremely useful
for assessing the adequacy of the diffusion approxi-
mation. Numerous diagnostic procedures are available
for evaluating the adequacy of linear models; Chatter-
jee and Hadi (1988), Cook and Weisburg (1982), Bels-
ley et al. (1980), and Draper and Smith (1981) are
excellent references. Furthermore, changes in the Wie-
ner-drift model, before and after a fixed time, can be
detected using regression methods. The relevance of
these procedures to evaluating the diffusion model is
discussed.

Evaluation of model assumptions

Our assumption of a Wiener-drift model for X(¢)
corresponds to the following regression model for the

transformed increment data (from Eq. 28):
Y=uD + ¢ (33)

where the ¢ X 1 vector of errors € = (¢, €, . . ., €)’;
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the errors are assumed to be independent normal ran-
dom variables with common mean O and variance o2.
Thus, a violation of the diffusion model assumptions
can be detected by evaluating the assumptions of the
regression analysis.

Notice that the transition is the fundamental obser-
vation in the likelihood function (Eq. 22); the popu-
lation observations n,, n,, ..., n, appear only in the
context of transitions from one to the next.

Graphical and analytical methods for checking the
regression model assumptions are invariably based on
the residuals or transformations of the residuals, where
the jth residual is the difference between the jth ob-
servation and its predicted value: e, = y, — ;1\/17, (e.g.,
Draper and Smith 1981, Cook and Weisburg 1982).
Although the residuals are subject to some restrictions
(e.g., correlations among the ¢; may be nonzero), they
can be loosely interpreted as the observed errors if the
model is correct. Hence, they should exhibit behaviors
that tend to confirm the model assumptions or at least
that do not contradict these assumptions (Draper and
Smith 1981).

Residuals can be used to check the independent in-
crements property, an assumption imposed on X(¢) via
the Wiener-drift approximation. This assumption is
crucial to the analyses presented here. If the assump-
tion is reasonable, then serial autocorrelations among
the increment variables W, (see Eq. 27) are negligible
and hence the limiting distributional results of Tulja-
purkar and Orzack (1980) and Heyde and Cohen (1985)
can be applied to the transitions; that is, the W, are
approximately independent normal random variables.
Correlations among the transitions suggest that the
Wiener-drift process for X(¢) is inappropriate. In this
case, while the least squares estimates of ¢ and ¢? are
statistically consistent (i.e., the estimates get ‘“‘closer”
to the true parameter values as the sample size increas-
es), they may not be the best estimates. We refer to
Heyde and Cohen (1985) for more appropriate esti-
mators when the errors are correlated.

We note that even with serially uncorrelated envi-
ronmental fluctuations, the W), in most age-structured
populations have a theoretical serial correlation. The
cause of this correlation is the time lag inherent in age-
structured survival and reproduction; a big pulse of
reproduction, for instance, leads to another pulse some
years later when the ‘““baby boom” reaches reproduc-
tive maturity. The theoretical Wiener-drift approxi-
mation strictly applies only for time intervals encom-
passing many generations. Use of a Wiener-drift
likelihood (Eq. 27) to model the W, will result, in the
case of serially uncorrelated environmental fluctua-
tions, in an underestimate of the infinitesimal variance
of the theoretical Wiener-drift approximation.

There is as yet no entirely satisfactory way to correct
for this bias with a single time series, without additional
knowledge of age-specific demographic parameters.
Methods discussed by Heyde and Cohen (1985) and
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Lande and Orzack (1988) involve estimating high or-
der autocovariances or pooling transitions into a few
long-term transitions, with the price of high standard
errors for the estimates of ¢2. The situation warrants
further investigation. In the meantime, use of the Wie-
ner-drift model for a population time series should rely
heavily on diagnostic techniques, such as discussed
here, in order to minimize potential bias.

A popular test for detecting first-order autocorrela-
tion among the errors of a regression model is the
Durbin-Watson test. The test statistic for testing the
null hypothesis of uncorrelated errors is

q q
d=2 (= ¢.)/ 2 e
j=2 j=1

Draper and Smith (1981) provide tables of upper and
lower critical values of d for a number of significance
levels. This test is available in many statistical com-
puting packages and therefore can be easily incorpo-
rated in the analysis. Higher order autocorrelations can
be detected by subjecting the residuals to standard time-
series analyses (e.g., Pankratz 1983), provided enough
data are available.

Other analytical, as well as graphical methods are
available for checking the remaining model assump-
tions (e.g., normality, constant variance) and we refer
the reader to Draper and Smith (1981) and Cook and
Weisburg (1982) for a discussion of these standard pro-
cedures. It is worth noting that if the population ob-
servations n,, n,, ..., n, are taken at equally spaced
time points, so that the 7, are equal, many of these
graphical methods are uninformative.

(34)

Sensitivity analysis

In recent years, numerous statistical measures have
been developed for detecting unusual (e.g., outliers) or
highly influential observations (Belsley et al. 1980,
Chatterjee and Hadi 1988). As pointed out by Belsley
etal. (1980:3), such transitions are not necessarily “bad”
data points; rather, they may contain some of the most
interesting sample information. However, they may
also reflect an unknown recording error or they may
have resulted from circumstances different from those
common to the remaining data (e.g., a population re-
duction due to an unusual catastrophic storm or re-
moval of population members into captivity by man-
agers). Since these observations can have a substantial
effect on the parameter estimates (that is, the estimates
are extremely sensitive to them), we recommend
screening for them in the analysis; many statistical soft-
ware packages will calculate these measures.

An observation is an outlier if it is not successfully
accommodated by the fitted regression model. Resid-
uals or transformed residuals corresponding to outliers
are large compared to those of other observations in
the data set. However, a small residual does not nec-
essarily imply that the corresponding observation is a
typical one; the method of least squares avoids large

BRIAN DENNIS ET AL.

Ecological Monographs
Vol. 61, No. 2

residuals in fitting the model and thus may accom-
modate an atypical transition at the expense of the
other data points. These transitions are commonly re-
ferred to as influential observations since they exces-
sively influence the parameter estimates as compared
to the remaining data. Note that a transition may be
judged as an outlier, an influential observation, or both.

Outliers are identified via statistical measures based
on residuals and can be detected using formal testing
procedures or informal comparisons of relative mag-
nitude. One measure, which Chatterjee and Hadi (1988:
74) call the internally studentized residual, is the jth
residual divided by its estimated standard deviation:

e

] =—
TOVE( — by (33)

where h; = 7,/t,is the jth diagonal element of the matrix
D(D'D) '’ (see Eq. 28). While the /;are notindependent
(since the residuals are not independent), a formal test
is available for detecting the presence of a single outlier.
If 1., denotes the maximum of the values of | I,|, then
approximate critical values for I,,,, at the « signifi-
cance level, are given by

e =\ /Y= Dwarar.
: q—2 +ﬁ/q,1,q—1 ’
where f,,,, ,-, is the 100[1 — (a/g)]th percentile of an
F distribution with 1 and ¢ — 1 degrees of freedom.
Thus, at the « level of significance, I, is an outlier if
I > Co
The externally studentized residual (Chatterjee and
Hadi 1988:74) is defined as

(36)

Eym ot (37)
Va2, (1 — hy))

where 2, is the (unbiased) estimate of ¢ when the jth
transition is deleted from the analysis (see Eq. 42 be-
low). This measure for detecting outliers has some ad-
vantages over I,. By excluding the jth transition in
estimating o2, 6%, ignores gross errors in the jth ob-
servation. Also, E, tends to reflect large deviations more
dramatically than /.. In addition, E; has a Student’s ¢
distribution with g — 2 degrees of freedom, which sug-
gests that a transition for which [E;| > 2 and E, is
large in magnitude compared to those of the remaining
transitions should be investigated as a possible outlier.
Measures for detecting influential observations are
commonly based on the omission approach, in that
they measure changes in the parameter estimates or
predicted values when the jth data point is excluded
from the analysis. Cook’s distance, C; (Chatterjee and
Hadi 1988:117), measures the change in the slope es-
timate, {i, and can be expressed as a function of the

internally studentized residual:

C, = I2hy/(1 — hy). (38)
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Large values of C, indicate that the jth transition is
influential. Although C;isnot a true Frandom variable,
comparing C; to the probability points of an F distri-
bution with 1 and g — 1 degrees of freedom provides
descriptive or qualitative levels of significance (Chat-
terjee and Hadi 1988).

Welsch and Kuh’s distance, WK;, or the DFFITS;
statistic (Chatterjee and Hadi 1988:120), measures the
influence of the jth observation on the predicted value

AV

hj/
= (39)

g

WK, = |E|

Again, a large value of this statistic indicates a poten-
tially influential transition. While WK, does not have
a Student’s ¢ distribution with g — 2 degrees of freedom,
it is a z-like statistic. This suggests that data points for
which WK, > 2 should be regarded as influential ob-
servations.

In some regression studies 4, alone is used as an
influence measure. A point is considered influential if
h;; exceeds some specified constant. We point out that
this approach leads to some peculiarities for regression
through the origin. Since 4, = 7,/¢,, only transitions
with longer time intervals can be influential, but never
shorter time intervals. The other influence measures
discussed in this subsection depend on the y; values as
well as the #,; values and hence avoid this undesirable
property.

Once unusual or highly influential transitions have
been identified, they must be investigated to determine
if they are in error or the result of some catastrophic
event. If so, we recommend deleting them from the
analysis. When the jth transition is deleted, the like-
lihood function (Eq. 22) has the corresponding tran-
sition pdf excluded from the product, and the log-like-
lihood (Eq. 23) has the jth term excluded from the
sum. Egs. 24 and 25 for the ML estimates then become
altered to account for the missing transition:

w= {,é] log(n,/n,_.)}/{é T,};

i#*j i*j

a2 = (1/p) 2‘1: (1/7)[log(n,/n,_)) — pr)>.  (41)

i=1
i*)

(40)

Here p is the number of transitions included in the
estimates (= ¢ — 1 when just one transition is deleted).
Additional transitions can be deleted from the for-
mulas in the same way. If transitions are deleted from
the ML estimate of ¢2, then the unbiased estimate is

2 = pe*/(p — 1). 42)

Note that 62 = 62, if the jth observation alone is ex-
cluded. The estimates, i and 62 can easily be obtained
by omitting the appropriate pairs (3, \/7;) from the
regression analysis. With transitions deleted, the dis-
tribution Egs. 29-32 for the parameter estimates would
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have 27, in place of 7,, where the sum is over all tran-
sitions included in the analysis, and p in place of q.

Change in parameters

A permanent change in the infinitesimal mean growth
rate may result from a sustained change in the popu-
lation’s environment or from a change in conservation
efforts on the part of managers. Suppose the change in
conditions is known to have occurred after the jth tran-
sition. A corresponding change in u (without a change
in ¢2) is incorporated in the diffusion model by ex-

panding the regression model (Eq. 33):
Y =Du + ¢, 43)

where u = (u,, u,)’ and p is a ¢ X 2 matrix with first

column (\/7,, ..., V7,0, ...,0) and second column
©,...,0,V7,,1,...,\/7,). Thus, &, denotes the slope

parameter for the first j observations while the re-
maining g — j transitions have slope u,. As before, €
is the ¢ X 1 vector of normal random variables, with
mean 0 and common variance ¢2. The ML estimates
of u, and u, are

;
i, = [log(n/ny)l/ 2 7., (44)
i=1
q
i, = [log(n,/n)/ 2 7., (45)
i=j+1
with distributions
J
fi, ~ normal{ u,, 0/ T,>, (46)
and !
q
fir ~ normal(uz, o/ 2 T,.>. (47)
i=j+1

The unbiased estimate of ¢2 is
2= (1/(qg — 2))

{jZ (1/7)[log(n/n,_) — iy,

i=1

+ é (1/7)llog(n/n;-,) — ﬁzf,lz}, (48)

i=j+1

while the ML estimate is

62 = (g — 2)6%/q. (49)

Also,
qd?/c? = (q — 2)6%*/6* ~ chi-square(q — 2). (50)

Hence, confidence intervals for the model parameters
can be readily obtained (e.g., see Eqgs. 31 and 32).

A formal test is available for testing whether the
change in the infinitesimal growth rate is significant.
The statistic

Ty = (1 — )NV + /g — )]

(D
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has a Student’s ¢ distribution with ¢ — 2 degrees of
freedom, under the null hypothesis that 4, — u, = 0.
Note that Eq. 51 is simply the two-sample ¢ statistic
(e.g., Neter et al. 1985:13).

A sustained alteration in a population’s environment
or management policies may also result in a permanent
change in the infinitesimal variance. The model (Eq.
43) can be used to include a change in o2 after the jth
transition by assuming that the first j errors in € are
normal random variables with common mean 0 and
variance ¢,2> while the remaining g — j errors are also
normal with mean O but have common variance o,2.
In practice, this amounts to fitting two regression mod-
els, one to the first j transitions and another to the
remaining data. Allowing a corresponding change in
the mean provides the best estimates of the variance
parameters, since the least squares estimate of o2 de-
pends on u (see Egs. 52 and 53). The ML estimates of
i, and i, are Eqs. 44 and 45. Their distributions are
Egs. 46 and 47, respectively, except with separate vari-
ance ¢,2 and 7,2 substituted in place of ¢2. The unbiased
estimates of the variances are

¢2=[1/G — 1] 12 (1/7)

i=1

‘[log(n,/n;,_\) — g,7]% (52)
6> =[1/(g —Jj— D] iﬂ (1/7)
“[log(n/n;-,) — ﬁlzf,-]z, (53)
with independent distributions
(G — 1)3,2/6,2 ~ chi-square(j — 1), (54)
(@ — j — 1)6,%/0,%> ~ chi-square(g — j — 1). (55)

Since the chi-square random variables Egs. 54 and 55
are independent, the ratio of the estimated variances
given by

F,

j—lg-j-1 — 0,%/6,% (56)
has an F distribution with j — 1 and g — j — 1 degrees
of freedom, under the null hypothesis that 7,2 = 07,2

(e.g., Neter et al. 1985:7).

ESTIMATING GROWTH PARAMETERS
Continuous rate of increase

We define the continuous rate of increase as the pa-
rameter r in the exponential growth SDE (Eq. 12). By
adopting this definition, we abandon the notion that
there is anything “intrinsic’’ about a deterministic for-
mulation of exponential growth. Rather, r is simply a
constant related to statistical properties of the sto-
chastic process N(¢). Specifically, rn represents the in-
finitesimal mean of N(¢), that is, rnAt is approximately
the average amount of change in N(¢) over a tiny time
interval Az, given that N(¢) = n. The advantage of this
definition becomes apparent when r must be estimated
from time series observations.
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Any parameter in a deterministic model can only be
sensibly estimated from time series data by embedding
the model in a statistical/stochastic framework, that is,
by converting the model into a stochastic one. The
parameter r in the deterministic growth equation N(¢)
= nye” is often estimated by linear or nonlinear least
squares, with observations on population size serving
as the “dependent variable,” and observations on time
as the “independent variable.” The quality of such an
estimate, however, depends upon: (a) an assumed sta-
tistical model of errors in the regression, and (b) wheth-
er that error model adequately represents how the data
arise. The usual regression package printouts of con-
fidence intervals for r based on least squares calcula-
tions assume independent, normal errors. This amounts
to no more than fitting a stochastic growth model to
the data, and a bad one at that, since the observations
in a population time series are seldom independent.

Instead, the exponential growth SDE (Eq. 12) pro-
vides at the outset an explicit, realistic structure of
dependence in observations of a population’s size
through time. Under the exponential growth SDE, log-
scale increments of population size are independent,
but the population’s actual sizes are not. This depen-
dence structure is directly incorporated into parameter
estimates through the likelihood function (Eq. 22). If
the model is an acceptable representation of the system
(as evaluated by the diagnostic procedures described
in the Model evaluation section, above), then the pa-
rameter r as defined here can be efficiently estimated
from data.

The quantity r is a function, given by Eq. 13, of the
parameters u and ¢2. Substituting the ML estimates of
u and ¢ in Eq. 13 produces the ML estimate of r:

F= 0+ (6%2). 57)
The ML estimate is biased due to the bias of 62, though
the bias becomes negligible when ¢ is large. An unbi-
ased estimate of r results from using 2 instead of ¢

F=a+ (6%2). (58)

Since £ and 62 are “sufficient statistics” (all information
in the data about u and o2 is contained in g4 and 62?), a
fundamental result in statistics known as the Rao-
Blackwell theorem applies (see Rice 1988:261): 7is the
uniformly minimum variance unbiased (UMVU) es-
timate of r. In other words, no other unbiased estimate
of r has a smaller variance. Curiously, 7 has a smaller
variance than 7, due to the well-known fact that 62 has
a smaller variance than 2. Though 7 will be, on the
average, ‘“‘closer” to r than 7, it will tend to underes-
timate r.

The variance of 7 is just the sum of the variances of
i and 62/2, since i and 62 are independent:

Var(f) = Var(a) + Var(6%/2)

= (o%/t,) + {a¥/[2(g— D]}. (59)
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The distribution of 7 is complicated; it is the sum of a
normal-distributed random variable, i, and a gamma-
distributed (=constant-chi-square) random variable,
2/2. However, the distribution is fairly well approxi-
mated by a normal distribution for moderately large
values of g (say, 20 or so):

F~ normallr, — + ———).
tq 2((1 - 1)

An approximate 100(1 — «)% confidence interval for
r is thus given by

Ftz Al &
x ol — P EEE— .
/2 1, 29 - 1)

Here z,,, is the 100[1 — (a/2)]th percentile of the stan-
dard normal distribution.

We point out that the symbol rin Braumann’s (19835)
paper on estimation corresponds to the exponential
growth SDE (Eq. 12) as defined by the Stratonovich
stochastic integral. Braumann noted that the ML es-
timate of r he derived does not depend on g (the num-
ber of observations), but just on #, (the amount of time
the system has been observed). In fact, under the Stra-
tonovich interpretation of the SDE (Eq. 12), r equals
u (the infinitesimal mean of the log-scaled process),
and the infinitesimal mean of N(¢) is r + (¢%/2). In this
case, the ML estimate of r is given by Eq. 24 for the
ML estimate of u.

The fundamental discrete-time nature of population
growth for many vertebrate species (e.g., seasonal
breeding periods), coupled with the limit theorems on
stochastic projection matrices (Tuljapurkar and Or-
zack 1980, Heyde and Cohen 1985), suggests instead
that the Ito interpretation of the SDE (Eq. 12) be used
in typical endangered species contexts. Estimates of r
(Egs. 57 and 58) then become strongly dependent on
g as well as ¢,. Braumann (1983a) rightly observed that
the differing definitions of the SDE (Eq. 12) produce
semantic differences in how r is viewed as a central
tendency measure. Under the Stratonovich calculus r
is the rate constant in the geometric mean (Eq. 11) of
N(t), while under the Ito calculus r is the rate constant
in the mean (Eq. 9) of N(¢). The mean of a lognormal
random variable reflects the skewness of the distri-
bution. The small but real possibility of large values
of N(¢) has a strong upward influence on the mean, and
so the lognormal shape parameter ¢2 appears in Eq. 9
for the mean. The estimates of r presented here (Egs.
57 and 58) thus depend on the information available
for estimating o2 (i.e., g) as well as u (i.e., t,).

(60)

(61)

Finite rate of increase

We define the finite rate of increase, denoted A, as
follows:

A = exp(r) = Y(1; ny, u, 62)/n,

= explu + (6%/2)]. (62)
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It is the mean population size after 1 yr (Eq. 9) divided
by the initial size. The quantity approximates the dom-
inant eigenvalue of the average projection matrix of
the population, when the stochastic projection matrices
are serially uncorrelated (see Eq. 3). More generally, A
is simply a positive constant appearing when the SDE
(Eq. 12) is rewritten in discretized form as a stochastic
difference equation:

N + 1) =ANQ)L, (63)

where L is a lognormal random variable with a mean
of 1 and a shape parameter o2 (i.e., log L ~ nor-
mal[—(0?/2), ¢2]). The distributions of N(¢) in Egs. 12
and 63 coincide for integer values of . A more de-
scriptive term for A might be the ‘“discrete rate of in-
crease,” but the above term is widely used in the con-
text of deterministic growth models.

The ML estimate of A is obtained from the definition
(Eq. 62) using the ML estimates of u and ¢

A = exp(F) = exp[a + (6%/2)]. (64)

An alternate estimate uses the unbiased 7 instead of 7:
exp(7). Both of these are biased estimates of A, though
the bias disappears as g and ¢, become large. The bias
can be eliminated with a little programming effort.
Shimizu and Iwase (1981; see also Shimizu 1988) stud-
ied estimation of functions in the form exp(au + bo?),
where a and b are constants. With the help of their
results, we find that the following expression gives the
UMVU estimate of A:
)

Here F,(v; z) is the ‘“‘zero-F-one” hypergeometric
function, an easily computed infinite series:

o . g—1 g—1
A = exp(g)oF 1< ;

T (©3)

>
oF\(v; 2) E Tk
where (v), denotes v(v + 1) ... (v + j — 1), with (v), =
1. Successive terms in the series are handily calculated
with a recurrence relation: writing Q, = Z/[(v),(j!)], we
see that Q,,, = Qz/[(v + j)(j + 1)] and Q, = 1. The
terms rapidly become small, and the sum can be trun-
cated when adding more terms produces negligible
change.

Additionally, Shimizu and Iwase’s (1981) results al-
low us to obtain the variance of A:

Var(h) = A2[‘,,,(1,(0_2),71(«z_—_l; (g -1y > . 1]_
q 2 44
(67)

(66)

The distribution of A will converge to a normal[A,
Var(X)] distribution as g and ¢, become large. Estimates
of 1 and ¢2 can be substituted into the variance formula
(Eq. 67) for constructing confidence intervals of the
form {\ =+ za,z[\fz;r(f\)]‘/’}. However, the distribution of
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X is skewed, and convergence to normality might be
slow. The situation should be studied further with com-
puter simulations. In the interim, we recommend in-
stead the use of the approximate normal distribution
of 7 for constructing approximate 100(1 — a)% confi-

dence intervals for A:
1 G2
F+ 7l — + ———— |t ). 68
(e"p{’ "Lq 2(q~1>]}> ©9)

Mean population size

The mean population size given by Eq. 9 represents
the expected value of N(¢) at a time ¢. This quantity is
also a function of the unknown parameters u and o2,
a